3.495 \(\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=144 \[ -\frac{a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{3/2} (3 A+2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}-\frac{a (3 A-2 C) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d}+\frac{A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d} \]

[Out]

(a^(3/2)*(3*A + 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (A*(a + a*Sec[c + d*x])^(3/2
)*Sin[c + d*x])/d - (a^2*(3*A - 6*B - 8*C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) - (a*(3*A - 2*C)*Sqrt[
a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.310406, antiderivative size = 144, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.146, Rules used = {4086, 3917, 3915, 3774, 203, 3792} \[ -\frac{a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt{a \sec (c+d x)+a}}+\frac{a^{3/2} (3 A+2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{d}-\frac{a (3 A-2 C) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{3 d}+\frac{A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a^(3/2)*(3*A + 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (A*(a + a*Sec[c + d*x])^(3/2
)*Sin[c + d*x])/d - (a^2*(3*A - 6*B - 8*C)*Tan[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) - (a*(3*A - 2*C)*Sqrt[
a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 4086

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*
Csc[e + f*x])^n)/(f*n), x] - Dist[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2 -
 b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])

Rule 3917

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m
 + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Gt
Q[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3915

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Dist[c, In
t[Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3792

Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*b*Cot[e + f*x])/
(f*Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac{A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}+\frac{\int (a+a \sec (c+d x))^{3/2} \left (\frac{1}{2} a (3 A+2 B)-\frac{1}{2} a (3 A-2 C) \sec (c+d x)\right ) \, dx}{a}\\ &=\frac{A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{a (3 A-2 C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{2 \int \sqrt{a+a \sec (c+d x)} \left (\frac{3}{4} a^2 (3 A+2 B)-\frac{1}{4} a^2 (3 A-6 B-8 C) \sec (c+d x)\right ) \, dx}{3 a}\\ &=\frac{A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{a (3 A-2 C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}+\frac{1}{2} (a (3 A+2 B)) \int \sqrt{a+a \sec (c+d x)} \, dx-\frac{1}{6} (a (3 A-6 B-8 C)) \int \sec (c+d x) \sqrt{a+a \sec (c+d x)} \, dx\\ &=\frac{A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}-\frac{a (3 A-2 C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{\left (a^2 (3 A+2 B)\right ) \operatorname{Subst}\left (\int \frac{1}{a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{a^{3/2} (3 A+2 B) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}+\frac{A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{d}-\frac{a^2 (3 A-6 B-8 C) \tan (c+d x)}{3 d \sqrt{a+a \sec (c+d x)}}-\frac{a (3 A-2 C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 1.94935, size = 115, normalized size = 0.8 \[ \frac{a \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sec (c+d x)+1)} \left (\sqrt{\sec (c+d x)-1} (\sec (c+d x) (3 A \cos (2 (c+d x))+3 A+4 C)+4 (3 B+5 C))+6 (3 A+2 B) \tan ^{-1}\left (\sqrt{\sec (c+d x)-1}\right )\right )}{6 d \sqrt{\sec (c+d x)-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(a*Sqrt[a*(1 + Sec[c + d*x])]*(6*(3*A + 2*B)*ArcTan[Sqrt[-1 + Sec[c + d*x]]] + Sqrt[-1 + Sec[c + d*x]]*(4*(3*B
 + 5*C) + (3*A + 4*C + 3*A*Cos[2*(c + d*x)])*Sec[c + d*x]))*Tan[(c + d*x)/2])/(6*d*Sqrt[-1 + Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.371, size = 409, normalized size = 2.8 \begin{align*} -{\frac{a}{12\,d\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( -9\,A\sqrt{2}\sin \left ( dx+c \right ) \cos \left ( dx+c \right ){\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}-6\,B\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) \sqrt{2} \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) -9\,A\sqrt{2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}\sin \left ( dx+c \right ) -6\,B \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{3/2}{\it Artanh} \left ( 1/2\,{\frac{\sqrt{2}\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}\sin \left ( dx+c \right ) +12\,A \left ( \cos \left ( dx+c \right ) \right ) ^{3}-12\,A \left ( \cos \left ( dx+c \right ) \right ) ^{2}+24\,B \left ( \cos \left ( dx+c \right ) \right ) ^{2}+40\,C \left ( \cos \left ( dx+c \right ) \right ) ^{2}-24\,B\cos \left ( dx+c \right ) -32\,C\cos \left ( dx+c \right ) -8\,C \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

-1/12/d*a*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(-9*A*2^(1/2)*sin(d*x+c)*cos(d*x+c)*arctanh(1/2*2^(1/2)*(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)-6*B*cos(d*x+c)*sin(d*
x+c)*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin
(d*x+c)/cos(d*x+c))-9*A*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c)
)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*sin(d*x+c)-6*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(3/2)*arctanh(1/2*2^(1/2)
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)*sin(d*x+c)+12*A*cos(d*x+c)^3-12*A*cos(d*x
+c)^2+24*B*cos(d*x+c)^2+40*C*cos(d*x+c)^2-24*B*cos(d*x+c)-32*C*cos(d*x+c)-8*C)/cos(d*x+c)/sin(d*x+c)

________________________________________________________________________________________

Maxima [B]  time = 2.19349, size = 2431, normalized size = 16.88 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1)
+ a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*A + 2*((a*arctan2((cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*s
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)
*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a))*B/(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4))/d

________________________________________________________________________________________

Fricas [A]  time = 0.654096, size = 941, normalized size = 6.53 \begin{align*} \left [\frac{3 \,{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} +{\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt{-a} \log \left (\frac{2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \,{\left (3 \, A a \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, B + 5 \, C\right )} a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{6 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, -\frac{3 \,{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )^{2} +{\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt{a} \arctan \left (\frac{\sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) -{\left (3 \, A a \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, B + 5 \, C\right )} a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \,{\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/6*(3*((3*A + 2*B)*a*cos(d*x + c)^2 + (3*A + 2*B)*a*cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(
-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)
) + 2*(3*A*a*cos(d*x + c)^2 + 2*(3*B + 5*C)*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si
n(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), -1/3*(3*((3*A + 2*B)*a*cos(d*x + c)^2 + (3*A + 2*B)*a*cos(d*x
 + c))*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (3*A*a*co
s(d*x + c)^2 + 2*(3*B + 5*C)*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c)^2 + d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 6.54185, size = 633, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

-1/6*(3*(3*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 2*B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x +
1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(3*A*sqrt(-a)*a*sgn(cos(d*x + c)) +
2*B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^2 + a*(2*sqrt(2) - 3))) + 12*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^2*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) - A*sqrt(-a)*a^3*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqr
t(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^
2*a + a^2) + 4*(3*sqrt(2)*B*a^3*sgn(cos(d*x + c)) + 6*sqrt(2)*C*a^3*sgn(cos(d*x + c)) - (3*sqrt(2)*B*a^3*sgn(c
os(d*x + c)) + 4*sqrt(2)*C*a^3*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x
 + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d